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The behavior of the magnetoresistance of single and arrays of disordered metal rings is investigated.
The average localization length, L., which is related to the conductance, is found to oscillate with a
strong half-flux-quantum harmonic at low magnetic field. The ratio of the amplitude of the full-flux
oscillations versus the half-flux oscillations is shown to decrease with the number of rings. All numerical
results follow a universal law where the amplitude of escillations of L, is found to be proportional to the
square of the ratio of L. to the perimeter of the rirg. At high magnetic fields, full-flux oscillations are

observed.

PACS numbers: 71.55.Jv, 71.50.+t, 72.15.Eb

The half-flux-quantum oscillations of magnetoresis-
tance of disordered metal rings and cylinders, predicted
by Al'tshuler, Aronov, and Spivak (AAS),' have been
observed experimentally on disordered cylinders and ar-
rays of rings by several groups.?~> Experiments on single
rings, on the other hand, showed complicated features.
Full-flux-quantum oscillations were observed by Webb
et al.® on small rings. Later, Chandrasekhar et al.” ob-
served h/2e oscillations at low field and 4/e oscillations
at higher field on single aluminum and silver rings. Very
recently both h/e and the AAS h/2e oscillations were
measured® in samples consisting of N rings connected in
series. Clear evidence was found that averaging leads to
a N ~'2 dependence of the amplitude of the #/e oscilla-
tions while the amplitude of the %/2e oscillations is in-
dependent of the number of rings.

The AAS effect results from the quantum corrections
to conductance due to backscattering interference.’
Theoretical works based on calculation of the transmis-
sion coefficient in one-dimensional metal rings,'%-12 how-
ever, showed that the fundamental period of oscillation
at zero temperature is the full-flux quantum and that
higher harmonics become dominant only at special con-
ditions. The very important difference between the two
theories is that the former employed the ensemble aver-
age. Carini, Muttalib, and Nagel!? also showed that the
existence of degeneracies and time-reversal invariance of
the Hamiltonian after ensemble average could lead to
k/2e oscillations. It has recently been shown!* that for a
symmetric normal-metal ring, averaging of the transmis-
sion coefficient T over disorder gives oscillations with a
period of %/2e. As the elastic scattering gets stronger,
the periodicity of the magnetoresistance oscillations be-
comes A/e. Numerical simulation of the transmission-
matrix method by Stone and Imry!® also showed %/2e
oscillations when ensemble averaging was performed.
The existence of uncorrelated regions and thermal
smearing!® are important sources of self-averaging.
Complications due to the aperiodic fluctuations added to
the magnetoresistance also exist in small samples.!¢

In this paper, we present the results of a detailed nu-
merical simulation on a single small ring and rings con-
nected in series. The disorder, width, magnetic field, and
length dependence of the transmission coefficient, which
is related to L., for the rings will be presented.

We simulate a small rectangular ring by a two-
dimensional strip described by a nearest-neighbor tight-
binding Hamiltonian

H=Y epn|imXim |+ 3 Vigym | ImXI'm'|. (1)
Im I'm'im

| Im) denotes the site corresponding to the respective x,y
coordinates. The strip boundary geometry can be set by
proper choice of the site energies &, and the hopping
matrix elements Vi 'm'. &n, are generally taken as in-
dependent random variables uniformly distributed be-
tween & W/2 in the disordered region of the ring. As a
result of our method of calculation outside the ring area,
g1m are set to very large values (infinite potential bar-
riers) so that the electrons will be moving only inside the
ring area. A uniform magnetic field, normal to the ring,
introducing a phase to the hopping matrix element can
be taken into consideration via Peierls substitution!”:

_ lifm=m'andl=/=%1,
Vimim =g ial if | = ' and m'=m % 1,

(2)

where « is the number of flux quanta per umit cell,
a=eB/h, and the lattice constant is taken to be 1.

We use the recursive Green’s function method to cal-
culate!” the localization length. Free boundary condi-
tions are used in the transverse direction (y direction).
The imaginary part of the energy is taken to be 2x 104
in units of V. This is small enough that the inelastic
scattering length is larger than the size of the rings stud-
ied. Since the Aharonov-Bohm effect depends only on
the topology, following Stone,'>!¢ we make a small hole
in the middle of the strip but with much larger magnetic
field in the hole than in the annulus. This way we can
save on computer time and achieve a good aspect ratio
(the ratio of the flux through the hole to that through
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the annulus), which is important in order to observe
k/2e oscillations. We also attach on one end a semi-
infinite disordered *“lead” to achieve stable values for the
localization length. The geometry of the ring is the fol-
lowing: L is the length of the long side of the rectangu-
lar ring, M is the width of the strip, and MW is the
width of the ring. In our numerical studies we always
calculate the localization length which is related to the
conductance by Landauer’s formulal?

G =(e¥/zh)/ (™= —1), (3)

where L is the perimeter of the loop and L. is the locali-
zation length. Throughout this paper, formula (3) will
be adopted.

We organize our results as follows:

(1) Single ring without average over disorder.— A
single ring at zero temperature does not have a self-
average property.!> For L.=L we expect an oscillation
of fundamental period h/e with a smaller A/2e com-
ponent. This is indeed what we observed in our simula-
tion. For strong disorder, as can be seen in Fig. 1(a), an
h/e oscillation is observed for all the widths studied.
However, for some specific configuration of weak disor-
der, where L.,>L, a very good h/2e oscillation was
present as seen in Fig. 1(b). These accidental % /2e os-
cillations are very sensitive to disorder configurations
and energy and gradually transform to /e oscillations
in higher magnetic field. In most of the cases that we
studied the #/e component dominates, in agreement with
results on the transmission coefficient for a normal-metal
ring with contacts.!0-1214 )

(2) Single ring with ensemble average.—In all the
cases that we studied, an average over different configu-
rations of disorder gives an A/ 2e oscillation in the locali-
zation length and, through Eq. (3), in the conductance of
a single ring. This is clearly seen in Fig. 1(c) where L,
versus the flux through the ring is plotted. Note that the
h/2e oscillation is the dominant one. Therefore, the en-
semble averaging brings the period k/2e. The conver-
gence, however, can be very slow when L,> L. Note
also in Fig. 1(c) that for strong magnetic fields, the 2/2e
oscillation is not too dominant and the h/e oscillation
starts to appear. For even stronger magnetic fields, as
one can see from the inset of Fig. 1(c), there is even
more structure within a full-flux period. This feature
has to be investigated further.

(3) Series-connected rings.—h/2e oscillations are
seen again in this case too, when a large number of rings
are connected in series. In Fig. 1(d) we show results for
N=50 rings in series, of width MW =4, and disorder
W =20, averaged over 100 different configurations of
disorder; a perfect &/ 2e oscillation is observed. Again in
this case the dominant oscillation is the &/ 2e.

(4) h/e vs h/2e component.— Recently, detailed exper-
iments® have been performed to test the stochastic
averaging of the h/e oscillations. In the experiment?® it
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FIG. 1. Quantum oscillations of the localization length L.,
which is related to conductance G through Eq. (3), for the fol-
lowing cases: (a) A single ring with disorder W =4.0. No aver-
age over disorder is taken. The A/e oscillation is clearly ob-
served. (b) A single ring with disorder W =1.2. No average
over disorder is taken. The h/2e oscillation is observed at small
magnetic fields B and at high B gradually changes to A/e. (c)
A single ring with disorder W =2.0. An average over 1000 dis-
order configurations is taken. Inset: the behavior of L, for
very strong magnetic fields. (d) A series of fifty rings with dis-
order W =2.0. An average over 100 disorder configurations is
taken. In all the cases the width and length of the ring are
MW =4 and L =30, respectively. Aspect ratio is 7.

Le

was clearly shown that the h/e and the A/2e oscillations
coexist when the ring number is small. At constant tem-
perature, the /e component was found to decrease with
the square root of the number of loops N, while the am-
plitude of the h/2e component was independent of the
number of rings. We have performed systematic simula-
tions to check the experimental results and predict possi-



VOLUME 57, NUMBER 24

PHYSICAL REVIEW LETTERS

15 DECEMBER 19846

ble new behaviors. We have used 100 configurations to
represent the finite temperature.!’> Then we add single
rings one by one in series. To extract the 2/e and k/2e
components from the total conductance (localization
length L.) oscillation, we use an approximation which
neglects higher harmonics and assume that the total con-
ductance consists of only the 4/e component and %/ 2e
component, i.e.,

G(¢/¢o) =@Go+0.54, COS(¢/¢0)
+0.54,c0s(2¢/90), 4)

where go=F%/e. As can be seen from Fig. 1, the curves
are relatively smooth and so the approximation in Eq.
(4) is fine. Therefore, we have that A4,=|G (L)
—G(0)| and

A, =|GO0) -G+ E) =G ()| /2

In Fig. 2 we plot the relative values of A, with respect to
A as a function of the ring number for two different
geometries. We see that the k/e component decreases in
inverse proportion to the number of rings relative to the
h/2e component. This seems to disagree with the exper-
imental results® which claim a 1/~/N decrease of the /e
component. This discrepancy might be a result of the
different way of extracting the two components in our
simulations and in the experiments.

(5) Amplitude of oscillation.—The size of the in-
terference effects depends on the range of coherence of
the diffusion electrons and is limited by other phase-
breaking processes. Amont the most important are in-
elastic scattering and magnetic scattering. In our model,
the relevant physical lengths are the perimeter of the
loop, the localization length, and the magnetic field
length Ly ~h/e(MW)B. At low magnetic fields B, it is
the ratio of L, to L which determines the size of the os-
cillation. To test this idea, we numerically calculated the
conductance of rings of different perimeters, different
widths, and different strengths of disorder W. The re-
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FIG. 2. The ratio A41/A2 vs the number of rings N on a log-
log plot for different values of lengths L and disorder W. A;
and A4; are the amplitudes for the %/e and h/2e oscillations of
the conductance, respectively.

sults are shown in Fig. 3, where the amplitude of the os-
cillation for small fields B is plotted as a function of
L./L. We indeed see that all the data of the different
cases that we examined scale in a universal curve. In
particular, we have that the magnitude of the oscillation
of the localization length L. is AL./L =0.067(L./L)?, for
all the widths, perimeters L, and disorder W. Notice
that as L./L increases, the magnitude of the conductance
oscillations also increases. Our results suggest that it is
possible to have conductance fluctuations!® of values
higher than e?/h. In particular, for the single-ring
geometry and L./L =35, we obtain AG =10.4¢%/h as the
conductance fluctuation. Meanwhile, for a series of
rings and L./L =10, we obtain AG =8.3¢%/h. Stone and
Imry'3 have only calculated a particular case of L./L and
their results are in qualitative agreement with ours. In
particular, from the top of Fig. 2 in Ref. 15 we have
G max =3.20e?/h and the magnitude of the %/2e conduc-
tance oscillations is given by AG =0.05¢%/h. From the
value of G and Eq. (3) we obtain L./L =4.10, and from
the AG value we have AL./L =0.05 which is lower than
our estimates. This difference is due to the fact that
Stone and Imry'> used a single ring and averaged over
disorder. In Fig. 3 we plot the data for fifty rings con-
nected in series and then averaged over disorder. The
single-ring data also follow a universal law, the only
difference being that AL./L ==0.0025(L./L)? instead of
AL./L=0.067(L./L)2%. These laws will break down
when AL /L, is of order 1. We want to mention that the
data shown in Fig. 3 are the overall amplitude oscillation
of L. for small field B. For L, <L, the 2/2e component
is the dominant oscillation, while for L. > L we might
have an % /2e oscillation but sometimes an /e oscillation
is also present.

In conclusion, our work demonstrates unambiguously
that single tight-binding rings, when averaged over disor-
der, do exhibit quantum interference effects, with a flux
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FIG. 3. Magnitude AL, of the oscillation of localization
length L. vs L./L for different widths, lengths, and disorder.
The number of rings ranges from 40 to 100. Inset: the magni-
tude of the conductance oscillation plotted vs L./L.
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period % /2e at low fields and with a flux period of A/e
clearly visible at higher fields [see, for example, Fig.
1(c)]. This behavior has been suggested in Refs. 10-12,
but it was only recently shown numerically to be correct
by Refs. 14 and 18 for the transmission coefficient. This
picture agrees with the experimental results. Our nu-
merical results provide a universal law for the strength of
the oscillation of the magnetoresistance. The oscillation
strength only depends on the ratio of the relevant
lengths, the ring perimeter, and the localization length.
In particular, when L. <L the magnetoresistance is 4 /2e
periodic, but as L. increases the /e harmonic dominates
and finally when L.>> L the h/2e harmonic might disap-
pear completely. At the other extreme, when L. < L, the
h[2e periodicity persists but the oscillation amplitude de-
creases with respect to the background value. It will be
very interesting to check experimentally this universal
behavior. The above phenomena have been observed for
rings of width MW =1 as well as for rings of finite
width. For the finite-width rings, the A/2e oscillation is
seen when the mean free path /, which is different from
L., becomes smaller than L. Details of this behavior will
be published elsewhere. Finally, by our increasing the
temperature, the inelastic mean free length decreases
and will eventually become smaller than L. This phase
incoherence introduced by an increase of the tempera-
ture will destroy both periods of the magnetoresistance.

We acknowledge helpful discussions with G. S. Grest
and S. R. Nagel. Ames Laboratory is operated for the
U.S. Department of Energy by Iowa State University
under Contract No. W-7405-Eng-82.
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